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We use the symbol “∼” to mean “is approximately equal to” throughout this document.

1. (a) Reading from the given table, we find C(3) = 85 and C(7) = 69. We are to take the
average rate of change for C over the interval from t = 3 to t = 5 as our approximation
for C ′(5), and this gives

C ′(5) ∼ C(7)− C(3)

7− 3
=

69− 85

4
, or (1)

C ′(5) ∼ −16

4
= −4 C◦/min. (2)

(b) The data given in the table yields the left Riemann sum:

C(0) · (3− 0) + C(3) · (7− 3) + C(7) · (12− 7) = 100 · 3 + 85 · 4 + 69 · 5 = 985. (3)

Thus,
1

12

∫ 12

0

C(t) dt ∼ 985

12
. This means that the average temperature of the coffee

during the interval between t = 0 minutes and t = 12 minutes was approximately
985

12
C◦.

(c) If the rate of change of the temperature of the coffee, C ′(t), when 12 ≤ t ≤ 20 is given

by C ′(t) = −24.55e0.01t

t
, then the Fundamental Theorem of Calculus tells us that

C(20) = C(12) +

∫ 20

12

C ′(τ) dτ (4)

= 55− 24.55

∫ 20

12

e0.01τ dτ

τ
. (5)

Numerical integration now leads to C(20) ∼ 40.32919 C◦ ∼ 40.329 C◦.
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(d) With C ′′(t) =
0.2455e0.01t(100− t)

t2
and 12 ≤ t ≤ 20, it is apparent that C ′′(t) > 0.

(This is because the denominator of this fraction, being a square, must be positive
throughout the given interval, while the only factor of the numerator that can ever be
negative is (100 − t)—which is positive in the given interval.) Because its derivative,
C ′′(t), is positive on the interval [12, 20], the quantity C ′(t) must be increasing on that
interval. This means that the temperature of the coffee changes at an increasing rate
when 12 ≤ t ≤ 20.
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2. In this problem velocity v(t) is give by v(t) = ln(t2 − 4t+ 5)− 0.2t.

(a) If the particle is at rest when t = tR, then v(tR) = 0, or

ln(t2 − 4t+ 5)− 0.2t = 0. (6)

Solving numerically, we find that tR ∼ 1.42561 ∼ 1.425.

(b) Acceleration, a(t), being the time derivative of velocity, we have

a(t) = v′(t) (7)

=
d

dt

[
ln(t2 − 4t+ 5)− 0.2t

]
(8)

=
2t− 4

t2 − 4t+ 5
− 0.2, (9)

whence

a(1.5) =
2 · 1.5− 4

(1.5)2 − 3 · (1.5) + 5
− 0.2 = −1.000. (10)

We know that the speed S(t) = |v(t)| of the particle is never negative and satisfies

[S(t)]
2

= [v(t)]
2
, (11)

so

2S(t) · S′(t) = 2v(t) · v′(t). (12)

From these observations, it follows that the sign of S′(t) is always the same as the sign
of the product v(t) · v′(t). But v(1.5) · v′(1.5) ∼ (−0.768) · (−1.000) > 0, from which we
see that S′(1.5) > 0. Because S′ is continuous near t = 1.5, this means that S′(t) > 0 for
t close to 1.5. We conclude that S is increasing on a small interval centered at t = 1.5.
So speed is increasing near t = 1.5.

(c) Position, x(t), is related to velocity v(t) by x′(t) = v(t). Therefore, by the Fundamental
Theorem of Calculus

x(t) = x(1) +

∫ t

1

v(τ) dτ, (13)

so that

x(4) = −3 +

∫ 4

1

[
ln(τ2 − 4τ + 5)− 0.2τ

]
dτ. (14)

Numerical integration gives x(4) ∼ −2.80288 ∼ −2.81.

(d) For the total distance traveled when 1 ≤ t ≤ 4 we calculate numerically∫ 4

1

∣∣∣∣ ln(τ2 − 4τ + 5)− 0.2τ

∣∣∣∣ dτ ∼ 0.95813 ∼ 0.958, (15)

or about 0.958.
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3. (a) See Figure 1.
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Figure 1: Solution to Problem 3(a).

(b) Critical points for a solution function H(t) are to be found where H ′(t) = 0 and where
H ′(t) does not exist. But we are given that H ′(t) is defined for all t in the interval (0, 5).
Thus, we seek solutions to the equation

H ′(t) =
1

2
[H(t)− 1] cos

t

2
= 0. (16)

We are given that H(t) > 1 for 0 < t < 5. Thus, H ′(t) can be zero only where cos
t

2
= 0

and 0 < t < 5. We conclude that there is just one critical point, where t = π.

The second derivative H ′′(t) is given by

H ′′(t) =
d

dt
H ′(t) (17)

=
d

dt

(
1

2
[H(t)− 1] cos

t

2

)
(18)

=
1

2
H ′(t) cos

t

2
− 1

4
[H(t)− 1] sin

t

2
(19)

Now cos
π

2
= 0, sin

π

2
= 1, and we are given that H(π) > 1 so that

H ′′(π) = 0− 1

4
[H(π)− 1] < 0. (20)
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When its second derivative is negative, a curve is concave downward, so H is concave
downward in the vicinity of the critical point t = π, and the critical point gives a local
maximum for H.

(c) We are to solve the initial value problem

dH

dt
=

1

2
(H − 1) cos

t

2
; (21)

H(0) = 4 (22)

by the method of separation of variables.

From (21), we can write

2 dH

H − 1
= cos

t

2
dt, (23)

whence, making use of (22),

∫ H

4

2 dh

h− 1
=

∫ t

0

cos
τ

2
dτ. (24)

Thus

�2 ln |h− 1|
∣∣∣∣H
4

= �2 sin
τ

2

∣∣∣∣t
0

; (25)

ln
(
|H − 1|

)
− ln 3 = sin

t

2
. (26)

We know that H(0) = 4, so our solution satisfies H(t) − 1 > 0, at least when t is near
t = 4. Consequently, |H(t)− 1| = H(t)− 1, and we may write

ln(H(t)− 1) = ln 3 + sin
t

2
; (27)

H(t)− 1 = 3esin
t
2 (28)

Thus, the solution, H, that we seek is given by

H(t) = 1 + 3esin
t
2 . (29)
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4. (a) The part of the function f extending from the point (0, 2) to x = 7 passes through the
point (6,−1) and is given to be a straight line, so when 0 ≤ x ≤ 7,

f(x) = 2− 1

2
x. (30)

The function g is defined by

g(x) =

∫ x

0

f(t) dt. (31)

Making use of the fact that we are given the value

∫ 0

−6
f(t) dt = 12, we find that

g(−6) =

∫ −6
0

f(t) dt = −
∫ 0

−6
f(t) dt = −12; (32)

g(4) =

∫ 4

0

(
2− 1

2
t

)
dt =

(
2t− 1

4
t2
) ∣∣∣∣4

0

= 4; (33)

g(6) =

∫ 6

0

(
2− 1

2
t

)
dt =

(
2t− 1

4
t2
) ∣∣∣∣6

0

= 3. (34)

(b) The graph of g(x) =

∫ x

0

f(t) dt has critical points in the interval [0, 6] at those points

of (0, 6) where either g′(x) = 0 or g′(x) is undefined. But the Fundamental Theorem of
Calculus tells us that g′(x) = f(x) throughout the domain of g. We can see from the
graph of f that the only critical point for g is the single point where f(x) = 0—that is,
at x = 4.

(c) If h(x) =

∫ x

−6
f ′(t) dt, the Fundamental Theorem of Calculus, together with the fact that

(reading from the graph) f(−6) = 0.5, tells us that

h(x) = f(x)− f(−6) = f(x)− 0.5. (35)

Thus h(6) = f(6)− 0.5. From what is given, we see that f(6) = −1, so h(6) = −1.5.

From (35), we have h′(x) = f ′(x), so from (30), h′(x) = −1

2
when 0 < x < 7. Thus,

h′(6) = f ′(6) = −1

2
.

From the fact, already adduced, that h′(x) = −1

2
when 0 < x < 7, we find that h′′(6) = 0.
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5. We are given, here, that

x2 + 3y + 2y2 = 48, (36)

and, when (x, y) lies on this curve,

y′ = − 2x

3 + 4y
. (37)

(a) At the point (2, 4), which lies on the curve (36), we have

y′
∣∣∣∣
(2,4)

= − 4

19
. (38)

Thus, the equation for the line tangent to the curve (36) at (2, 4) is

y = 4− 4

19
(x− 2). (39)

We can obtain the approximate value of y0 for the point (3, y0) on the curve (36) near
(2, 4) by setting x = 3 in (39):

y0 = 4− 4

19
(3− 2) =

72

19
. (40)

(b) The line y = 1 has slope zero. From (37), we see that y′ = 0 only when x = 0, so if the
given line is tangent to the curve (36), its point of tangency must be (0, 1). But

(x2 + 3y + 2y2)

∣∣∣∣
(0,1)

= 02 + 3 · 1 + 2 · 12 6= 48, (41)

so the coordinates of this point don’t satisfy equation (36). The line y = 1 is not tangent
to the curve (36).

(c) At the point (
√

48, 0) we have

y′
∣∣∣∣
(
√
48,0)

= − 2x

3 + 4y

∣∣∣∣
(
√
48,0)

= −2
√

48

3
= −8

√
3

3
, (42)

so the line tangent to the the curve (36) has negative slope at the point (
√

48, 0). That
tangent line is therefore not vertical, because vertical lines have no slope.

(d) For a particle moving on the curve

y3 + 2xy = 24, (43)

we have, by implicit differentiation,

3y2
dy

dt
+ 2y

dx

dt
+ 2x

dy

dt
= 0. (44)
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Consequently, if
dy

dt
= −2 when the particle is at (4, 2), then

3(2)2 · (−2) + 2(2) · dx
dt

+ 2(4)(−2) = 0, (45)

so that

dx

dt
= 10 units per second. (46)

8



6. (a) The area of the region R is given by

∫ 2

0

[(
x2 + 2

)
−
(
x2 − 2x

)]
dx.

(b) The area of a rectangle with base B whose height is half its base is
B2

2
, and the base,

B, of a rectangle extending perpendicularly from the x-axis to the curve y = g(x) is
B = g(x). The area of the solid described in the problem is therefore

1

2

∫ 5

2

[g(x)]
2
dx =

1

2

∫ 5

2

(
x4 − 4x3 + 4x2

)
dx (47)

=
1

2

(
1

5
x5 − x4 +

4

3
x3
) ∣∣∣∣5

2

(48)

=
1

2

(
1

5
· 55 − 54 +

4

3
· 53
)
− 1

2

(
1

5
· 25 − 24 +

4

3
· 23
)

(49)

=
250

3
− 8

15
=

414

5
. (50)

(c) π

∫ 5

2

(
400− [20− (x2 − 2x)]2

)
dx gives the volume of the solid obtained by rotating the

region S about the line y = 20.

2π

∫ 15

0

(
4−

√
1 + y

)
(20− y) dy is an alternate solution.
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