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We use the symbol “~” to mean “is approximately equal to” throughout this document.

1. (a) Reading from the given table, we find C(3) = 85 and C(7) = 69. We are to take the
average rate of change for C' over the interval from ¢ = 3 to ¢t = 5 as our approximation
for C’(5), and this gives

C(7)—-C(3)  69—-85

7—3 N 4

C'(5) ~ 1= —4 C°/min. (2)

C'(5) ~

or (1)

(b) The data given in the table yields the left Riemann sum:

C(0)-(3—0)+C(3)-(T—3)+C(7)-(12—7) =100-3+85-4+69-5 =985. (3)

I 985
Thus, 1 C(t)dt ~ 13 This means that the average temperature of the coffee
during the interval between t = 0 minutes and ¢ = 12 minutes was approximately
985
— C°.
12
(c) If the rate of change of the temperature of the coffee, C’(t), when 12 < ¢ < 20 is given
24.55 0.01t
by C'(t) = —+, then the Fundamental Theorem of Calculus tells us that
20
C(20) = C(12) + C'(r)dr (4)
12
20 0.017 4
= 55— 24.55/ £ T (5)
12 T

Numerical integration now leads to C'(20) ~ 40.32919 C° ~ 40.329 C°.



0.01¢

(d) With C"(t) = 0.2455¢ 2 (100 - #) and 12 < ¢ < 20, it is apparent that C”(¢) > 0.
(This is because the denominator of this fraction, being a square, must be positive
throughout the given interval, while the only factor of the numerator that can ever be
negative is (100 — t)—which is positive in the given interval.) Because its derivative,
C"(t), is positive on the interval [12,20], the quantity C’(t) must be increasing on that
interval. This means that the temperature of the coffee changes at an increasing rate
when 12 <t < 20.




2. In this problem velocity v(t) is give by v(t) = In(t? — 4t + 5) — 0.2t.

(a)

If the particle is at rest when ¢ = tg, then v(tg) = 0, or
In(t? — 4t + 5) — 0.2t = 0. (6)
Solving numerically, we find that tg ~ 1.42561 ~ 1.425.

Acceleration, a(t), being the time derivative of velocity, we have

a(t) =v'(t) (7)
= [In(#* — 4t +5) — 0.2t] (8)
2 — 4
“p-mgs O3 )
whence
a(1.5) = 2:15 -4 0.2 = —1.000. (10)

(15)2-3-(15) +5

We know that the speed S(t) = |v(¢)| of the particle is never negative and satisfies
[S(O) = ()], (11)
o
25(t) - S'(t) = 2v(t) - V' (¢). (12)

From these observations, it follows that the sign of S’(t) is always the same as the sign
of the product v(t) - v'(¢). But v(1.5) - v'(1.5) ~ (—0.768) - (—1.000) > 0, from which we
see that S’(1.5) > 0. Because S’ is continuous near ¢ = 1.5, this means that S’(t) > 0 for
t close to 1.5. We conclude that S is increasing on a small interval centered at ¢t = 1.5.
So speed is increasing near t = 1.5.

Position, z(t), is related to velocity v(t) by 2/(¢) = v(¢). Therefore, by the Fundamental
Theorem of Calculus

z(t) = z(1) +/1 v(T) dr, (13)
so that
4
x(4) = -3 —|—/ [In(7% — 47 4+ 5) — 0.27] dr. (14)

Numerical integration gives x(4) ~ —2.80288 ~ —2.81.

For the total distance traveled when 1 <t < 4 we calculate numerically
4

J

In(r? — 47 + 5) — 0.27| dr ~ 0.95813 ~ 0.958, (15)

or about 0.958.



3. (a) See Figure 1.
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Figure 1: Solution to Problem 3(a).

(b) Critical points for a solution function H(¢) are to be found where H'(t) = 0 and where
H'(t) does not exist. But we are given that H'(t) is defined for all ¢ in the interval (0, 5).
Thus, we seek solutions to the equation

1 t
H'(t) = §[H(t) — 1] cos 3 =0 (16)
t
We are given that H(t) > 1 for 0 < t < 5. Thus, H'(t) can be zero only where cos 5= 0
and 0 <t < 5. We conclude that there is just one critical point, where ¢t = .
The second derivative H" (t) is given by

= % (;[H(t) — 1] cos ;) (18)
= %H'(t) Cosg - Z[H(t) —1] sm% (19)

Now cosg =0, sing =1, and we are given that H(mw) > 1 so that

H'(r) =0— i[H(w) —1]<o0. (20)



When its second derivative is negative, a curve is concave downward, so H is concave
downward in the vicinity of the critical point ¢ = m, and the critical point gives a local
maximum for H.

We are to solve the initial value problem

dH 1 t
E—ﬁ(H_l)COSQ, (21)
H(0) =4 (22)
by the method of separation of variables.
From (21), we can write
2dH t
ﬁ = COS 5 dt, (23)
whence, making use of (22),
H t
2dh / T
— = cos — dr. 24
/4 h—1 0 2 (24)
Thus
H At
ZIn|h — 1| :281115 ; (25)
4 0
t
In (|H —1]) 71n3:sin§. (26)

We know that H(0) = 4, so our solution satisfies H(t) — 1 > 0, at least when ¢ is near
t = 4. Consequently, |H(t) — 1| = H(t) — 1, and we may write

t
In(H(t) — 1) =In3 +sin 5 (27)
H(t)—1=3e™m3 (28)
Thus, the solution, H, that we seek is given by

H(t) =1+ 33, (29)



4.

(a)

The part of the function f extending from the point (0,2) to = 7 passes through the
point (6,—1) and is given to be a straight line, so when 0 < 2 < 7,

fla)=2- 5o (30)

The function ¢ is defined by
= dt. 31
oa) = [ sy (31)

0
Making use of the fact that we are given the value / f(t)dt =12, we find that
-6

gem—AGﬂww——fywﬁ——m; (32
g(4):/04(2—;>dt:(2t—it2>224; (33)
g(6) = /06 (2 — ;) dt = (Zt — iﬂ) Z = 3. (34)

T

The graph of g(z) = / f(t) dt has critical points in the interval [0, 6] at those points
0
of (0,6) where either ¢'(z) = 0 or ¢’(z) is undefined. But the Fundamental Theorem of

Calculus tells us that ¢’(z) = f(z) throughout the domain of g. We can see from the
graph of f that the only critical point for g is the single point where f(z) = 0—that is,
at x = 4.

If h(z) = / ' f'(t) dt, the Fundamental Theorem of Calculus, together with the fact that
(reading fro_I% the graph) f(—6) = 0.5, tells us that

Wx) = f(x) = f(=6) = f(z) = 0.5. (35)
Thus h(6) = f(6) — 0.5. From what is given, we see that f(6) = —1, so h(6) = —1.5.
From (35), we have h/(z) = f'(z), so from (30), h'(z) = —% when 0 < 2 < 7. Thus,
W(B) = F/(6) = 2.

1
From the fact, already adduced, that h/(z) = —5 when 0 < z < 7, we find that A" (6) = 0.



5. We are given, here, that

and,

(a)

x2 + 3y + 2% = 48, (36)

when (z,y) lies on this curve,

2z
= _ . 37
Y 3+ 4y (37)
At the point (2,4), which lies on the curve (36), we have
4
(274)
Thus, the equation for the line tangent to the curve (36) at (2,4) is
4
y=4——(x—2). (39)

19

We can obtain the approximate value of y for the point (3,yg) on the curve (36) near
(2,4) by setting x = 3 in (39):
4 72
—4- —(3-2)='=. 4
Yo 19 (3-2) T (40)
The line y = 1 has slope zero. From (37), we see that ¢’ = 0 only when x = 0, so if the
given line is tangent to the curve (36), its point of tangency must be (0,1). But

(z% + 3y + 2y%) =02+3-14+2-12#48, (41)

(0,1)

so the coordinates of this point don’t satisfy equation (36). The line y = 1 is not tangent
to the curve (36).
At the point (v/48,0) we have

/

Y

_2v48_ 8V3

= (42)
(v/48,0) 3 3

B 2x ‘
wigo) 3ty
so the line tangent to the the curve (36) has negative slope at the point (v/48,0). That
tangent line is therefore not vertical, because vertical lines have no slope.

For a particle moving on the curve
y® 4 2zy = 24, (43)
we have, by implicit differentiation,

d d d
3y2—y + 2y—x + 222

dt dt a (44)



Consequently, if

so that

dy _
dt

—2 when the particle is at (4,2), then

3(2)% - (—2) +2(2)

dzr

dx

dt

+2(4)(=2)

— = 10 units per second.

dt

0,

(45)



2
(a) The area of the region R is given by / [(x2 +2) — (22 - 2x)| da.
0

B2
(b) The area of a rectangle with base B whose height is half its base is TR and the base,

B, of a rectangle extending perpendicularly from the z-axis to the curve y = g(z) is
B = g(x). The area of the solid described in the problem is therefore

1 [° 1 [°

5/2 [9(2)]? do = /z (z* — 42® + 42%) dz (47)
1 (1 s a4 3) °

= - —T + ST
2 \5 37 ),

1/1 4 1/1 4
=_ (=5 =5t4 .53 ) ——(-.2° -2t 4 .23 49
2<5 3 ) 2(5 T3 (49)

(50)

5

(c) 7r/ (400 — [20 — (2* — 22)]?) da gives the volume of the solid obtained by rotating the
2
region S about the line y = 20.

15
277/ (4 -1+ y) (20 — y) dy is an alternate solution.
0



